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I. INTRODUCTION AND RESULTS

Let 7Tn,m be the collection of all polynomials of degree n, leading coefficient
equal to one, and divisible by x n- m• Hence, each p E 7Tn,m is of the form
p(x) = x n + d1x n- 1 + ... + dmxn- m . For each class '7Tn,m, let p~,m be the
(unique) polynomial in '7T n ,m with minimum supremum norm on [0, I]; that
IS,

IIP:,m II", = inf{llp II",: p E '7Tn,m},

where Ilfll", = sup{lf(x)1 : 0 ~ x ~ I}. For example, p~,n = 2-n+lTn ,

where Tn(x) = cos(n cos-1 x) are the Chebyshev polynomials. It is easy to
verify that not all the coefficients ofp~,n are bounded as n tends to infinity. In
fact, the "middle" coefficients of p~,n have the order of magnitude n-1 / 2

(27jI6)n/4. In this paper, we show that if m does not tend to infinity with n,
then all the coefficients ofp~,m are bounded. This is included in the following

THEOREM 1. Let m be a positive integer. Then there exist positive constants
Cj and C2 such that

(1.1)

for all n > m. Furthermore, the coefficients ofp~,m are bounded as n -4- 00.

We remark that this theorem can be generalized. In fact, if the exponents
n - m,... , n - 1 in p(x) above are replaced by integers A1(n), ... , Am(n),
respectively, where 0 ~ A1(n) < ... < Am(n) < 11, then the same conclusions
of Theorem 1 still hold as long as n - A1(n) is bounded as a function of n.
This result which is contained in Theorem 2 is stated and proved in Section 4.
Results analogous to Theorems 1 and 2 also hold for LP, I ~ p ~ 00. These

* Supported in part by the US Army Research Office under Grant Number DAHC04
75-G-0186.

227
0021-9045/78/0243-0227$02.00/0

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.



228 BOROSH. CHUI. AND SMITH

are stated as Theorem 3 in Section 5. This problem is inspired by the work
of Lorentz and Zeller on approximation by incomplete polynomials (cf.
[4, 5]). A related but somewhat different question was considered in [7, 8]. In
[I], the authors answered a question of Lorentz and two of the results in [I]
are used in the proof of Theorems I and 2.

Our approach to this problem is to compare it with the L 2[O, I] approxima
tion problem where "everything" can be done explicitly. We therefore, devote
the next section to the study of the L2[O, I] problem.

Let AIe,N = {AN c.= (,\ , .•• , Ale)}' where \- == \(N),j = I, ... , k, are integers
with °:s: A1 < ... < Ale , and for each AN E AIe,N let S(AN), AN == (A 1 , ... , A,J,
be the vector space spanned by {xAl, •••• X Ak }. Let eJ,.N be the L2 [O, I] error
function obtained by approximating x N from S(AN ); that is,

and

Ie

x N
- L ajxAj

j~l

(1.2)

(1.3)

where Ii . ii2 denotes the usual L 2 norm on [0, 1]. We show that if max{1 N 
Al(N)1 , i N - AIe(N)I} is bounded as N --+ 00, then the coefficients of eJ,.N
remain bounded. One, therefore, expects that under the same hypothesis,
all the k positive zeros of eJ,.N would cluster around the point 1. This and more
can be proved in the special case when AN has components consisting of
consecutive integers with N deleted. The fact that eJ,.N has precisely k positive
zeros can be seen by using the Descartes rule of signs and the alternating
property of best L2 [O, 1] approximation.

Let Al,N = (N - k + I, ... , N - I, N + I, ... , N + I), I:s: I :s: k -~ I,
AO,N = (N - k, ... , N - 1) and Ak,N = (N + 1,... , N + k). We have the
following

PROPOSITION 1. Let eJ,. be the L 2[O, 1] error function eJ,. as defined in
I,N N

(1.2) and (1.3) with AN = Al,N' Then for all I = 0, ... , k and all k and N with
N ~ k + I, all the positive zeros ofe.. lie in the interval [1 - k 2j2N, 1).

LN

All the afore mentioned L 2 results will be used to prove Theorem I.

2. BEST ApPROXIMATION BY INCOMPLETE POLYNOMIALS IN L 2

Let A Ie .N = {AN = (AI, ... , Ale): Aj = \(N), °:s: Al < ... < Ale} and
eJ,./x) = xN - L:~l ajxA; be defined as in the previous section. In this
section, we study some important properties of eJ,.N .
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LEMMA 2.1. For all N and AN E A k •N

1 kiN - A· I
Ii e"N 112 = (2N + 1)1/2 J1 N + Aj +1 .
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(2.1)

The above distance formula can be derived in a standard way (cf. [2; 9,
p. 98]). We also have explicit expressions for the coefficients aj .

LEMMA 2.2. For j = 1,... , k,

aj = - TI N - At . TI At + Ai + 1 .
t~l At - \ t~l N + At + 1
t#j

(2.2)

In particular, if max(1 N - Al I , I N - Ak I) is bounded, then the coefficients
aj,j = 1,... , k, are bounded as N -+ 00. Furthermore

(2.3)

To prove the above lemma, we note that al ,... , ak , and y = e..N(I) satisfy
the linear system:

al + ... + ak + y = 1,

k 1 1I ai= ,
j~l Ai + Av + 1 N + Av + 1

v = 1,... , k.

Apply Cramer's rule to solve for y. Simplifying the determinants by means
of induction, we obtain (2.3) (see also [2; 6, p. 35]). Again, solve for each ai .

By using (2.3), one can simplify the expression for aj to obtain (2.2).
It is interesting to note that

Next, we study the location of the positive zeros of e"
Z
•
N

when AN = Al. N •

Write

where at = at(l) and A l •N = (At, ... , An is defined as in the above section. As
mentioned above, each e.. has precisely k positive zeros. By the alternating

Z,N

property of e.. , it is clear that these zeros are distinct and lie in the interval
Z.N

(0, 1). Let Xi = Xi(l, N), j = 1,... , k, °< Xl < ... < Xk < 1, be these zeros.
Then if 1=0, Xl + ... + Xk = at; if 1= 1, Xl + ... + X k 0== Ijat; and if
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2 I ~ k, Xl Xle --akillai. By using (2.2), it is straightforward
to verify that for each I = 0, ... , k, and all k and N with N ?--" k + I.

Xl + ... Xk k(1 - kI2N).

Hence, Xl I k - 1 ?::- k(l -- kI2N), or 1 - k Z/2N Xl < 1. This completes
the proof of Proposition l.

We also remark that 1 - k 2/2N :s;. Xl ~ 1 - k12N.

3. PROOF OF THE MAIN RESULT

In this section, we prove the main theorem of this paper, namely Theorem l.
Again, let e"I.N be the error function e"N when AN = AI,N . Denote by Ii . IiI the
usual Ll norm on [0, 1]. We need several lemmas.

LEMMA 3.1. Let k be a positive integer and°~ I ~ k. Then

(3.1)

for all sufficiently large N.

Proof We write

.l-k'/ZN 1

II e"l N III = J ! e"l N(X)] dx + f I e"l N(X) I dx. (3.2)
, 0 ' l-7c'/ZN'

By Proposition I, we have

l-7c'/ZN l-7c'/2N 7cf I e,,/,N(x)1 dx ~ EN f XN- 7c+l TI (Xj - X) dx
o 0 j_el

l-7c'/ZN

< EN r. X N- 7c+l(1 - X)7c dx
• 0

< EN rXN-7c+I(1 - X)" dx
o

k'
~= EN (N - k + I + I).... (N + 1+ 1) , (3.3)

where EN = max(l, I at I). For the second integral, we use Schwarz's
inequality to obtain

1 k
r. I e"I,N(x)1 dx < (2N)1/2 e""N liz·

'l-le'/N
(3.4)
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We can now use (2.1) and (2.2) to obtain an upper bound of the integral in
(3.3) in terms of Ii e'). 112 and combine this estimate with (3.4) to arrive at

I.N

(3.1). This completes the proof of the lemma.
We next give a lower bound estimate of the Loo[O, 1J distance from x"i to

S(A/,N)' Denote this distance by

I '0= 0,... , k. We have the following

LEMMA 3.2. For I = 0,... , k and all sufficiently large N,

(3.5)

Proof Again, for convenience in notation, write A/,N = (At ,..., An
Since e'). is orthogonal to x';, ... , xAZ, we have

I.N

Consider the measure

dp, *(x) = e')."ix) dx

and apply the duality theorem (cf. [9, p. 71]) to obtain

Hence, (3.5) follows from (3.1), and this completes the proof of the lemma.
The following result was obtained in [1 J.

LEMMA 3.3. Let A = (AI, ... , Ak ), °:s;; Al < ... < Ak < N. Then doo(xN ,

S(A» is a decreasing function ofeach Aj ,j = 1,... , k.

Hence, we have the following

LEMMA 3.4. Let A = (AI'"'' Ak ), °:s;; Al < ... < Ak < N and ~ = (AI'
Al + 1,... , Al + k - 1). Then

doo(xN
, S(A» :s;; doo(xN , S(~».
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We are now ready to give an upper bound estimate of d",(X'V, AN), where
AN = (AI"'" Ak) satisfies 0 < Al < .,. < Ak < N.

LEMMA 3.5. Let AN ~=c (AI"'" Ad where Aj \(N), 1 ~j ~ k, and
o~ Al < ... < Ak < N. Suppose that

(3.6)

for all large N. Then

(3.7)

C = 2A +lkk, for all sufficiently large N.

Proof Clearly, the function

X"l kf (N ~ AI) (x _ I)j
j~O .1

is in S(~N)' where ~N = (AI' Al + I, ... , Al + k - I). Hence, by Lemma 3.4,
we have

for all large N. This completes the proof of the lemma.
A less elementary and more precise upper bound estimate is given in [3,

p. 125].
We are ready to prove Theorem I. Let P~.m E 7Tnom be as defined in Section 1

and write
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Then II P~.m 1100 = doo(xn, S(~)), where ~ = (n - m,... , n - 1). Hence, by
applying Lemma 3.5, we have

(3.8)

for all large n, where C2 = 2m -tlmm . To obtain a lower estimate, we use
Lemma 3.2 with 1=0, k = m and N = n, and apply formula (2.1). This
gives

for all large n with Cl = m l/2m+l32m• In order to prove the boundedness of
the coefficients ci , j = 1'00" m, we use the following trick pointed out to us
by Professor P. Erdos. Let

i cz* I = max{1 ci I: 1 :S;; j < m}.

Then, using (3.8), we have

m I-m * * n~l * ..'\.
C2n ~ II Pn.m 1100 = I Cl I Ix - L bj x ]

j=1 00

with appropriate definitions of ~ = (AI ,... , Am) and bi's. Hence, we can apply
the lower bound estimate (3.5) in Lemma 3.2 and formula (2.1) in Lemma 2.1
to conclude that I ct I :S;; Bnm • c2n-"m = c2B for some constant B and all
large n. This completes the proof of Theorem 1.

4. A MORE GENERAL RESULT

[n this section we prove that Theorem 1 remains valid under a more
general setting. Let

where Aj = Aj(N), 1 :S;; j :S;; k, are integers with °:S;; Al < ... < Ak < N. Let
ci = ci(N),j = 1,... , k, be the coefficient of the Loo[O, I] error function;
that is,

k

*(x) x N
" c,*xA

;PN = - L.
j~1

and

We have the following result.
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THEOREM 2. Let As (ill'"'' ille), il j iI;(N), be defined as aboce alld
suppose that

(4.1 )

for all N. Then there exist positive constants C3 and C4 such that

(4.2)

for all N. Furthermore, the coefficients cj*(N),j = I,... , k are bounded as a
function ofN.

In order to prove this result, we need the following theorem established
in [I].

THEOREM A. Let (.L = ((Ll , ... , (Lie,), where (Ll , ... , (Lk are integers Ivith
o~ (Ll < ... < (Lk-l < N < (L1e-1+l < ... < (Lie and 0 ~ I ~ k. Let Al. N 0
I ~ N, be as defined in Section I. Then for each I, 0 ~ I ~ k and all N,

(4.3)

We now prove Theorem 2. The upper bound in (4.2) is precisely the result
in Lemma 3.5. To get the lower bound, we simply apply Theorem A and
Lemma 3.2 with 1=0, and then use Lemma 2.1. To prove that the coeffi
cients c1 = ct(N) are bounded, we again let

ici! =max{lc/!: I ~j~k}

and conclude that

I"

c4N-
1e

;? !i p~ = I ci I X
AI

- I d/xAj II
j=l co

with appropriate definitions of).. = (Xl,"', Xk ) and drs. By Theorem A, with
I = k - t + 1, we have

Hence, Lemma 3.2 applies and the same proof as that of Theorem 1 yields
that' ct I is bounded. This completes the proof of the theorem.
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5. FINAL REMARKS

By a similar proof, we also obtain the following [1' result.
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THEOREM 3. Let AN = (Al(N), ... , Ak(N», Al(N) < ... < Ak(N) < Nand
N ~ ,\(N) :( E for all N. Let pt* be the error function obtained by approxi
mating XV from S(AN ) in the L,,[O, 1] norm, 1 ~;; p ~;; roo Then there exist
positive constants C5 and C6 such that

Furthermore, the coefficients ofpt* are bounded as afunction ofN.

Theorem 1 leads to the following question: Let p~,mn 1"0: 7Tn.mn satisfy
! p~,mn II = inf{11 p 1100 : p E 7Tn.m), where mn~ 00 as n ~ roo To what extent
does Theorem 1 hold and are the coefficients ofp~ m no longer bounded? By
using Lemmas 2.1 and 2.2, this question is compl~tely answered in the L 2

ca~
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